
Chapter Five
Programming in MATLAB (M-File)

1. Introduction
 So far all the commands were executed in the Command Window.
The problem is that the commands entered in the Command Window
cannot be saved and executed again for several times. Therefore, a
different way of executing repeatedly commands with MATLAB is:

 To create a file with a list of commands.
 Save the file.
 Run the file.

If needed, corrections or changes can be made to the commands in the
file. The files that are used for this purpose are called script files or
scripts for short.

2. M-File Scripts

Examples: Here are two simple scripts.

Ex.1

Consider the system of equations:

 X + 2Y + 3Z = 1

 3X + 3Y + 4Z = 1

 X + 3Y + 3Z = 2

Find the solution x to the system of equations.

Solution:

Use the MATLAB editor to create a file: File New Script.

Enter the following statements in the file:
 A = [1 2 3; 3 3 4; 2 3 3];
 B = [1 ; 1 ; 2];
 X = A\B

Save the file, for example, example1.m.

Run the file, in the command line, by typing:
>> example1
 x=
 -0.5000
 1.5000
 -0.5000

When execution completes, the variables (A, b, and x) remain in the
workspace. To see a listing of them, enter whos at the command
prompt.

There is another way to open the editor:

>> edit
or
>> edit filename.m

To open filename.m.

Ex.2
Plot the following cosine functions, y1=2cos(x), y2=cos(x), and
y3=0.5*cos(x), in the interval 0 ≤ x ≤ 2π. Here we put the commands in
a file.

Create a file, say example2.m, which contains the following commands:
x= 0: pi/100 : 2*pi;
 y1=2*cos(x);
 y2=cos(x);
 y3=0.5*cos(x);

plot(x,y1,'--',x,y2,'-',x,y3,':')
 xlabel(' 0 \ leq x \ leq 2\pi ')
 ylabel(' Cosine functions ')
 legend('2*cos(x)' , 'cos(x)' , '0.5*cos(x)')
 title(' Typical example of multiple plots ')
 axis([0 2*pi -3 3])

Run the file by typing example2 in the Command Window.

Script side-effects: All variables created in a script file are added
to the workspace. This may have undesirable effects, because:

 Variables already existing in the workspace may be
overwritten.

 The execution of the script can be affected by the state
variables in the workspace.

As a result, because scripts have some undesirable side-effects, it
is better to code any complicated applications using rather
function M-file.

3. M-File functions

1- Anatomy of a M-File function

This simple function shows the basic parts of an M-file.

 function f = factorial(n) (1)
 %FACTORIAL(N) returns the factorial of N. (2)
 %Compute a factorial value. (3)
 F = prod(1: n); (4)

 It is important to note that function name must begin with a
letter, and must be no longer than the maximum of 63
characters.
 Furthermore, the name of the text file that you save will
consist of the function name with the extension .m

2- Input and output arguments

 function [outputs] = function_name (inputs)

4. Input to a script file

The variable is defined in the script file.
The variable is defined in the command prompt.
The variable is entered when the script is executed.

Here is an example:

% This script file calculates the average of points
% scored in three games.
% The point from each game are assigned to a variable
% by using the 'input' command.
game1=input('Enter the points scored in the first game');
game2=input('Enter the points scored in the second game');
game3=input('Enter the points scored in the third game');
average=(game1+game2+game3)/3

>> example3
>> Enter the points scored in the first game 15
>> Enter the points scored in the second game 23
>> Enter the points scored in the third game 10
average =
 16

5. Output commands

Two commands that are frequently used to generate output are:
disp and fprintf . The main differences between these two
commands can be summarized as follows (Table 12).

6. Debugging M-files

 This section introduces general techniques for finding errors in M-
files. Debugging is the process by which you isolate and fix errors in
your program or code. Debugging helps to correct two kinds of
error:

 Syntax errors: For example omitting a parenthesis or
misspelling a function name.

 Run-time errors: Run-time errors are usually apparent and
difficult to track down. They produce unexpected results.

7. Debugging process

1. Preparing for debugging
2. Setting breakpoints
3. Examining values
4. Correcting problems
5. Ending debugging

1- Preparing for debugging

Do the following to prepare for debugging:

 Open the file
 Save changes
 Be sure the file you run and any files it calls are in the

directories that are on the search path.

2- Setting breakpoints

 Set breakpoints to pause execution of the function, so we can
examine where the problem might be. There are three basic types
of breakpoints:

 A standard breakpoint, which stops at a specified line.
 A conditional breakpoint, which stops at a specified line and

under specified conditions.
 An error breakpoint that stops when it produces the specified

type of warning, error, NaN, or infinite value.

3- Examining values

 While the program is stopped, we can view the value of any variable
currently in the workspace. Examine values when we want to see
whether a line of code has produced the expected result or not. If
the result is as expected, step to the next line, and continue running.
If the result is not as expected, then that line, or the previous line,
contains an error. Use whos to list the variables in the current
workspace.

4- Correcting

 While debugging, we can change the value of a variable to see if the
new value produces expected results. While the program is stopped,
assign a new value to the variable in the Command Window, Work
space browser, or Array Editor. Then continue running and stepping
through the program.

5- Ending debugging

After identifying a problem, end the debugging session. It is best to
quit debug mode before editing an M-file. Otherwise, you can get
unexpected results when you run the file. To end debugging, select
Exit Debug Mode from the Debug menu.

