Chapter Five
Programming in MATLAB (M-File)

1. Introduction

So far all the commands were executed in the Command Window.
The problem is that the commands entered in the Command Window
cannot be saved and executed again for several times. Therefore, a
different way of executing repeatedly commands with MATLAB is:

[To create a file with a list of commands.
] Save the file.
1 Run the file.

If needed, corrections or changes can be made to the commands in the
file. The files that are used for this purpose are called script files or
scripts for short.

2. M-File Scripts

Examples: Here are two simple scripts.
Ex.1
Consider the system of equations:
X+2Y+3Z2=1
3IX+3Y +472=1
X+3Y+3Z=2
Find the solution x to the system of equations.
Solution:

Use the MATLAB editor to create a file: File — New — Script.

Enter the following statements in the file:
A=[123;334;233];

B=[1;1;2];

X =A\B

Save the file, for example, examplel.m.

Run the file, in the command line, by typing:
>> examplel
X=
-0.5000
1.5000
-0.5000

When execution completes, the variables (A, b, and x) remain in the
workspace. To see a listing of them, enter whos at the command
prompt.

There is another way to open the editor:
>> edit
or

>> edit filename.m

To open filename.m.

Ex.2

Plot the following cosine functions, y,=2cos(x), y,=cos(x), and
y3=0.5*cos(x), in the interval 0 < x < 2. Here we put the commands in
a file.

Create a file, say example2.m, which contains the following commands:
x= 0: pi/100 : 2*pi;

v1=2*cos(x);

y2=cos(x);

v3=0.5*cos(x);

plot(x,y1,'--',x,y2,"-',x,y3,":')
xlabel(' 0\ leq x \ leq 2\pi ')
ylabel(' Cosine functions ')
legend('2*cos(x)’, 'cos(x)’, '0.5*cos(x)')
title(' Typical example of multiple plots ‘)
axis([0 2*pi -3 3])

Run the file by typing example2 in the Command Window.

Script side-effects: All variables created in a script file are added
to the workspace. This may have undesirable effects, because:

 Variables already existing in the workspace may be
overwritten.

1 The execution of the script can be affected by the state
variables in the workspace.

As a result, because scripts have some undesirable side-effects, it
is better to code any complicated applications using rather
function M-file.

3. M-File functions

1- Anatomy of a M-File function
This simple function shows the basic parts of an M-file.

function f = factorial(n) (1)
(2)
(3)
F = prod(1: n); (4)

Part no. | M-file element | Description

(1) Function Define the function name, and the
definition number and order of input and
line output arguments

(2) HI1 line A one line summary description

of the program, displayed when you
request Help

(3) Help text A more detailed description of
the program
(4) Function body Program code that performs

the actual computations

It is important to note that function name must begin with a
letter, and must be no longer than the maximum of 63

characters.
Furthermore, the name of the text file that you save will

consist of the function name with the extension .m

Table 10 : Difference between scripts and functions

SCRIPTS F'UNCTIONS

- Do not accept input - Can accept Input arguments and
arguments or return output | return output arguments.
arguments.

- dStore variables in a - Store variables in a workspace
workspace that 1s shared internal to the function.

with other scripts
- Are useful for automating | - Are useful for extending the MATLAB

a series of commands language for your application

2- Input and output arguments

function [outputs] = function_name (inputs)

Table 11 : Example of input and output arguments

function C=FtoC(F) One Input argument and
one output argument

function area=TrapArea(a,b,h) Three inputs and one output

function [h,d]=motion(v,angle) Two inputs and two outputs

4. Input to a script file

W The variable is defined in the script file.
dThe variable is defined in the command prompt.
A The variable is entered when the script is executed.

Here is an example:

gamel=input('Enter the points scored in the first game');
game2=input('Enter the points scored in the second game');
game3=input('Enter the points scored in the third game');
average=(gamel+game2+game3)/3

>> example3

>> Enter the points scored in the first game 15

>> Enter the points scored in the second game 23
>> Enter the points scored in the third game 10
average =

16

5. Output commands

Two commands that are frequently used to generate output are:
disp and fprintf . The main differences between these two
commands can be summarized as follows (Table 12).

Table12 : disp and fprintf commands

disp . Simple to use.
. Provide limited control over the appearance of output

fprintf . Slightly more complicated than disp.
. Provide total control over the appearance of output

6. Debugging M-files

This section introduces general techniques for finding errors in M-
files. Debugging is the process by which you isolate and fix errors in
your program or code. Debugging helps to correct two kinds of
error:
J Syntax errors: For example omitting a parenthesis or
misspelling a function name.
J Run-time errors: Run-time errors are usually apparent and
difficult to track down. They produce unexpected results.

7. Debugging process

Al

Preparing for debugging
Setting breakpoints
Examining values
Correcting problems
Ending debugging

1- Preparing for debugging

Do the following to prepare for debugging:

M Open the file

J Save changes

[Be sure the file you run and any files it calls are in the
directories that are on the search path.

2- Setting breakpoints

Set breakpoints to pause execution of the function, so we can
examine where the problem might be. There are three basic types
of breakpoints:

1 A standard breakpoint, which stops at a specified line.

d A conditional breakpoint, which stops at a specified line and
under specified conditions.

1 An error breakpoint that stops when it produces the specified
type of warning, error, NaN, or infinite value.

File Edit Text Go Cell Tools IDebugl Desktop Window Help

[P

tech =l

v ax

EEl= | ’ 'R 1 BA. | é’j v Open Files when Debugging h B8 ’ Stack:| Base ’ fr BOBS @
BB -po |+ +a Step F10
= A=1[12:3:4; 248 Step In F11 O
1 s Step Out ShiftF11
3= C = zeros(3,1):
(D = ones(2,8): Run mlgd F5
X K =[a B C; DJ: Run Configuration for mlgd.m »
&= K(4,8)=8 Go Until Cursor B
7- K' oo
B K([3 1],:) = K([1 3] Set/Clear Breakpoint F12 -
i K*K! Set/Modify Conditional Breakpoint... 7
i: Enable/Disable Breakpoint
12 Clear Breakpoints in All Files
12 Stop if Errors/Warnings...
Bxat Debug Mode Shift+F5

script

Ln 13

Col 1

IOVR o

Pause a Running File

To pause the execution of a program while it is running, go to the Editor tab and click the Pause ||| button. MATLAB pauses execution
at the next executable line, and the Pause [J|| button changes to a Continue [button. To continue execution, press the Continue [

button.

Pausing is useful if you want to check on the progress of a long running program to ensure that it is running as expected.

Note: Clicking the pause button can cause MATLAB to pause in a file outside your own program file. Pressing the Continue > button
resumes normal execution without changing the results of the file.

3- Examining values

While the program is stopped, we can view the value of any variable
currently in the workspace. Examine values when we want to see
whether a line of code has produced the expected result or not. If
the result is as expected, step to the next line, and continue running.
If the result is not as expected, then that line, or the previous line,
contains an error. Use whos to list the variables in the current
workspace.

To modify a program while debugging:
1. While your code is paused, modify a part of the file that has not yet run.

Breakpoints turn gray, indicating they are invalid.
2. Select all the code after the line at which MATLAB is paused, right-click, and then select Evaluate Selection from the context menu.

_[myprogram.m*] +] \

1 3Create an array of 10 ones.

Evaluate Selection F9

D Open Selection Ctrl+D
g 2 T Help on Selection F1
Cut Ctrl+X
Copy Ctrl+C
Paste Ctrl+V
Select All tri+A

After the code evaluation is complete, stop debugging and save or undo any changes made before continuing the debugging process.

Find and Fix a Problem

While your code is paused, you can view or change the values of variables, or you can modify the code.
View or Change Variable While Debugging

Flfor n = 2:6
n: 1xl double =

-end

6

For example, here MATLAB is paused inside a for loop where n = 2:

I myprogram.m] -I-l

1 $Create an array of 10 ones.

o = X = ones|(1,10);

3

4 $Perform a calculation on items 2-6 in the array
S$— [CHlforn= 2:6

609 | x(n) =2 * x(n-1);

= end

n: 1xl double =

* Typen = 7; inthe command line to change the current value of n from 2 to 7.

* Press Continue [$> to run the next line of code.

MATLAB runs the code line x(n) = 2 * x(n-1); withn = 7.

4- Correcting

While debugging, we can change the value of a variable to see if the
new value produces expected results. While the program is stopped,
assign a new value to the variable in the Command Window, Work
space browser, or Array Editor. Then continue running and stepping
through the program.

5- Ending debugging

After identifying a problem, end the debugging session. It is best to
quit debug mode before editing an M-file. Otherwise, you can get
unexpected results when you run the file. To end debugging, select
Exit Debug Mode from the Debug menu.

Step Through File

While debugging, you can step through a MATLAB file, pausing at points where you want to examine values.

This table describes available debugging actions and the different methods you can use to execute them.

Description Toolbar Button Function Alternative
Continue execution of file until the line where the cursor is @Run to Cursor None

positioned. Also available on the context menu.

Execute the current line of the file. | MStep dbstep

Execute the current line of the file and, if the line is a call to | EUStep In dbstep in

another function, step into that function.

Resume execution of file until completion or until another |g>Continue dbcont
breakpoint is encountered.

After stepping in, run the rest of the called function or local [}Step Out dbstep out
function, leave the called function, and pause.

Pause debug mode. J[|Pause None

Exit debug mode. aQuit Debugging dbquit

